-
Resillience4j – 远程方法调用的工具箱
在MicroService的世界,很多的远程调用。只要有远程调用就会有网络不稳定问题,某些api会fail掉,有时候api会很长时间没有反馈,导致client的线程大量占用。 其实在非microservice的场景,数据库连接也有同样的问题。数据库操作有时候会遇到lock的问题,需要重试基本上是肯定的。 Resillience4j这个library专门针对这些常用的场景提供了非常容易使用的library。几个典型的功能如下: Retry 根据返回的结果,或者异常决定是不是要retry,如何retry。这个场景太常见了。比如说对于locking issue可以这么做。如果是data integrity的错误,就不需要retry。 Circuit Breaker 根据一个threshold,如果说一定时间内错误率到达一定程度,预计不断请求返回错误,还不如直接忽略,继续执行。特别是有时候错误会消耗额外的等待时间。 Rate Limiter 限制call的rate。比如说限制一秒钟一次call Time Limiter 限制执行的等待时间。 BulkHead 限制并发执行的数量。 Cache 一定时间内的重复call的cache,提高性能。 Fallback 提供可选的方案。比如说Object Query不行可以转ZOQL
-
AWS Service花费的潜在提高空间
用AWS Service也有3,4年的时间时间。对于花费我觉得还是有挺大的提高空间. ECS中采用Spot instance。 DynamoDB的花销应该还可以优化。历史数据应该可以设置TTL清除。这个应该非常简单。减少不必要的write 访问。 Redis的使用可以减少,可以用DynamoDB 减少ECS中instance的数量,采用auto scaling。 更好的平衡ec2 instance的cpu,memory的数量和每一个tasks的需求。保证每一个ec2 instance都被合理的利用。 其实这些东西很多都很简单,但是没有做的原因是从领导就没有强有力的推动这些东西。推动的人技术很弱,没办法找到好的切入点。当然后来新的领导来了,鸡飞狗跳,大家都在离开,还有谁真的在乎呢?
-
Tcp/Ip如何工作 (Kafka producer机制)
Application如果需要发送消息,是先发到操作系统的socket write buffer. 如果buffer(queue)满了,就是tcp congestion。同样的,外部来的消息会先到操作系统的socket receive buffer.如果buffer满了,操作系统就不会ack那个消息,也是congestion。 这个buffer的尺寸并不大,可以通过一下命令查询。参数分别代表,min, default, max: 之所以看到是因为看这篇文章http://cloudurable.com/blog/kafka-tutorial-kafka-producer-advanced-java-examples/index.html#:~:text=The%20Kafka%20Producer%20has%20a,acks%20to%20control%20record%20durability. 如果act是0,那么application只是把消息送到socket buffer就可以了。 还有一个配置参数 buffer.memory 这个是application level的setting,当broker无法访问,就会把消息放在内存中等待,在 max.block.ms 到期之前,send就会等待,到期就会抛一场。producer 也有重试机制。 但是这里有一个疑问,broker不可访问,是不是操作系统的socket write buffer也会满?我觉得不会,如果socket buffer满了就会影响所有的application,这个相当于外部的一个目标无法访问就导致所有的对外连接失效。应该是有一个机制操作系统知道外部网络不可送达,然后就会清楚缓存,告诉application目标不可达,然后application就会cache请求,然后不断的重试。 https://stackoverflow.com/questions/49649241/apache-kafka-batch-size-vs-buffer-memory
-
AWS上docker container的配置
-
Baeldung-最好的技术网站,没有之一
已经记不清楚看过多少baeldung的文章,今天又用它解决了一个java debug的问题。Tungsten以前一直可以remote debug忽然最近发现不行了。 最后还是这边文章解决了问题:https://www.baeldung.com/java-application-remote-debugging 原来根本原因是我们升级了JDK到8,老的Java 5的debug参数已经不能用了。。而且貌似Java 9以后参数又变了。 我看Baeldung有中文版,但是翻译工作做的真的一般。。中文真的应该有一个类似的权威的技术门户,文章的质量控制真的非常非常重要。有很多的技术网站,但是内容都是网友贡献,有些很好,有些质量却很差。还是需要中心化的审核机制
-
对象的序列化
对象的序列化和传输在过去这些年也发生了很多的变化。 Java序列化 很早以前用这个,因为这种序列化方式只能局限于一个单一语言,已经不再用了。 Json 用Jackson的ObjectMapper把一个对象序列化成Jason,然后再反序列化. Avro Kafka的默认方式。需要提前预定义好model,序列化,反序列化的时候都需要用那个model。model更新的时候我记得并不像想象的那么简单。比如说加一个字段。我们必须asdl定义NoAE的所有的消息都有自己对应的Class,Serializer和Deseriallizer,都是基于Avro的。比如 NotificationInstanceDeserializer NotificationInstanceSerializer AvroSerializer.java (This copied from GenericBinarySerializer.java in CDC-model) 而DACO的Serializer和Deserializer都是用一个 JsonSerializer.其实就是Jakson的ObjectMapper的实现。不过传输的都是二进制(但是其实就是json专程bytes而已,Kafka的所有消息都是bytes)。DataModel必须是JsonNode的实现(其实不需要,objectMapper.writeValueAsBytes这个方法就是接受Object)。没有语言独立的表达。。绑定Jackson. 这个就是偷懒的做法。不需要定义avil文件,只需要写一个继承JsonNode的bean就好。主要是公司没有一个统一的标准,大家都选择自己最convinience的方法去做。以后如果要改格式就还挺麻烦。 JsonSerializer.java KafkaJsonDeserializer.java. 所以Kafka consumer都是拿的JsonNode,需要再转为子类。比如NotificationMessage.java Protocal Buffer gRPC的默认方式。和Avro类似。尺寸都比较小。
-
Protected: DATA INTEGRATION Challenges
There is no excerpt because this is a protected post.
-
Protected: Main Service的AWS部署基础架构
There is no excerpt because this is a protected post.
-
Protected: 走出舒适圈
There is no excerpt because this is a protected post.
-
Recursive递归的时间空间复杂度计算
基本概念 递归可以层次可以通过tree的形式展现。 比如下面的递归: 时间复杂度:就是总的树的节点s数。如果每一次层嵌套都包涵2层平行的call,那时间复杂度就是O(2^N).如果有四层,那么就是O(4^N). 空间复杂度:就是总的树的深度。在这里就是N 深度优先算法(DFS: Depth First Search) 深度优先算法是一个递归调用。对于图的深度优先,我们有Vertices和Edge的数量,分别用V和E来表示。 时间复杂度:因为是图,所以在递归的时候每一次层有多少节点是不知道的,所以没办法按照2^n的普遍算法来算。但是换一个思路就是无论如何每条边都至少需要走一遍。时间复杂度就是总的边的数量,每条边会被访问两次,一次是遍历,一次是会退。O(E). 空间复杂: 如果所有的Vertices都是相连的,那么就会有V层深度的书。那空间复杂度就是O(V) 广度优先算法(BFS: Breadth First Search) todo 时间复杂度: O(V+E). 这里不是说O(E)比O(V+E)好。其实O(E)是O(2E).因为复杂度计算忽略常量,这里容易引起误解。 空间复杂: O(V) Reference: https://stackoverflow.com/questions/43298938/space-complexity-of-recursive-functionhttps://zhuanlan.zhihu.com/p/95081559#:~:text=%E5%9C%A8%E6%B7%B1%E5%BA%A6%E4%BC%98%E5%85%88%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95,%E5%BA%A6%E4%B8%BAO(V)%E3%80%82